
Final Report of AR-Guided Real-Time Spatial Tutoring System

(ARTUS): Assembly King

Rongqian Chen

Abstract

This report presents the design, implementation, and evaluation of the AR-Guided Real-
Time Spatial Tutoring System (ARTUS), developed for Meta Quest 3 and PC. ARTUS aims
to facilitate intuitive and real-time interactions between coaches and trainees in application
domains such as cooking, scientific experiments, and equipment repair. This document outlines
the system’s architecture, innovative features, challenges faced, and future possibilities.

1 Introduction

This system aims to help trainees do assembly work with real-time reference from the coach. For
mechanical part assembly work, due to the massive amount of parts involves in the product and
the complexity of the assembly work, people usually need to follow a manual instruction book.
However, such traditional method require professional knowledge because they require users to
understand the principles of how parts work together. The limitation of a manual interaction is
the way it interacts with users: it shows the parts in 2D and fixed instructions for tutoring without
knowing the current situations users might have. This might cause misunderstandings and mistakes
in assembly works.

Thus, in our case, we design a real-time tutoring system. Enhanced with expert experience, Vi-
sion Language Model, and Computer Vision techniques, AssemblyKing is able to perform accurate
and fast-response feedback for users. It can recognize the parts and understand assembly steps,
based on user’s current progress, it highlights the parts they need and provide tutoring instructions
for users. User can follow coach assembly steps and learn the tasks in a relative short time.

2 System Design & Architecture

AssemblyKing is designed to facilitate real-time spatial tutoring through augmented reality (AR)
for assembly training. The system supports both coach and trainee roles using Meta Quest Pro/3/3s
headsets and a PC-based application. At its core, the system captures the coach’s environment,
processes the visual data, and delivers real-time guidance to trainees over a local area network
(LAN). Key features include object detection, instruction generation, and seamless synchronization
of processed video feeds.

The system architecture is shown in Figure 1. Due to the limitation of Quest 3 camera access,
we use the casting function to capture and process the coach perspective. The coach uses the
Cast function available on the Meta Quest 3 headset, which streams their view to the Oculus
website. AssemblyKing accesses this video feed by running the main.py script on a PC, enabling
real-time screen recording and object detection using a pre-trained model. The processed video
feed, augmented with bounding boxes around detected objects, is synchronized with trainees via

1



Figure 1: The system architecture of ARTUS.

a web server. The application generates a dynamic URL displayed in the terminal, which can be
accessed on any browser connected to the same LAN. Figure 3 is an example of the website view
when the trainee opens the website in the browser.

From the trainee’s perspective, the system provides a user-friendly interface for viewing the
coach’s real-time augmented feed. Trainees connect to the system by entering the generated URL
in their browser. The interface not only shows the coach’s view with annotated bounding boxes for
detected objects but also includes step-by-step instructions generated by a Vision-Language Model
(VLM). These instructions dynamically adapt to the trainee’s progress, providing a personalized
and guided learning experience.

AssemblyKing is designed to scale effectively from one-to-many tutoring scenarios. The LAN-
based synchronization ensures that multiple trainees can access the coach’s feed simultaneously with
minimal latency. The system dynamically adjusts to different network configurations by generating
URLs specific to the local network, ensuring compatibility across various setups.

To achieve its functionality, AssemblyKing leverages several advanced technologies. Meta’s
Segment Anything Model 2 (SAM2) plays a critical role in dataset generation, providing precise
object segmentation with minimal manual input and annotating the object automatically. The
YOLOv8 model is used for real-time object detection after training on datasets generated using
SAM2. To achieve a good performance, each object requires more than 300 images, with different
distances and angles. In our case, we use the headset for video recording, the object is held
by hand and manually change the distance and angles. A clear background is needed during
the recording. Finally, we achieved 99.9% accuracy on the test set with 100 training epochs.
Additionally, we use the Vision-Language Model (VLM) to generate intuitive instructions based on
the current view, namely the ChatGPT-4o model. The input includes the object list, parts, and
assembly instructions, enhancing the training experience for trainees. These technologies enable
AssemblyKing to deliver a robust, scalable, and interactive AR-guided tutoring system. The details
of the model are depicted in Figure 2.

2



Figure 2: The model design of ARTUS.

3 Application Case Study

3.1 Domain Application

AssemblyKing is highly versatile and can be applied to any domain involving complex operations
and the assembly of mechanical or non-mechanical parts. For this project, the selected domain
focuses on mechanical assembly training, where trainees learn to assemble various components
under the guidance of a coach. The system enables trainees to follow step-by-step instructions
while visualizing object detection overlays, such as bounding boxes, on the components being
assembled. This real-time guidance facilitates a hands-on learning experience, ensuring accuracy
and reducing the risk of errors.

The coach’s perspective is streamed in real-time using a Meta Quest 3 headset, while the system
processes the video feed to detect objects and generate instructions for the trainee. This approach
significantly improves the efficiency of training by making the assembly process more intuitive and
interactive. For instance, during a mechanical assembly task, the system can highlight specific
components and guide trainees on how to connect or align parts. Screenshots from the trainee
perspective, as shown in Figure 3, demonstrate the bounding box annotations and instructional
overlays that facilitate the learning process.

3.2 Versatility

AssemblyKing is designed to adapt to various contexts, making it suitable for a wide range of
applications beyond mechanical assembly. For example:

• Cooking: The system can guide users through recipes, identifying ingredients and providing
step-by-step instructions for preparation and cooking.

• Scientific Experiments: In a laboratory setting, the system can help trainees locate and
identify tools or substances, ensuring proper handling and sequencing during experiments.

• Equipment Repair: The system can assist technicians in identifying faulty components and
guiding them through the repair or replacement process.

The adaptability of the system lies in its ability to train on different datasets tailored to the
specific domain. For instance, in the cooking application, the dataset might include images of

3



(a) (b) (c)

(d) (e) (f)

Figure 3: Screenshots from the trainee perspective, demonstrating various stages of interaction with
the AR-Guided Tutoring System. The images show bounding box annotations and instructional
overlays as seen by the trainee.

4



ingredients, utensils, and cooking steps. In contrast, for equipment repair, the dataset would focus
on machine components and their interconnections.

As shown in the screenshots in Figure 3, the system effectively provides instructional overlays
for different scenarios, ensuring a consistent user experience regardless of the application domain.
This adaptability demonstrates the potential of AssemblyKing to become a valuable tool across
diverse fields requiring training, assembly, or operational guidance.

4 Challenges & Lessons Learned

4.1 Technical Challenges

During the development, one of the biggest challenges is the integration of computer vision models
and the Unity environment. Since the Unity requires C# for development, and there are rare
resource of such models. Another option is develop sockets for python programs, but it due to the
time constraint of this project, this option is not feasible. Finally, we choose to use python for
image processing, segmentation and Vision-Language Model programming.

Another challenge is to access camera view of Quest3. Meta has limit the thrid party developer
access the camera view due to privacy concerns. So the only way to get the view and process it at
a external program is to use casting function.

4.2 Design Challenges

Developing AssemblyKing presented several design challenges, primarily revolving around ensuring
real-time performance, system usability, and robust object detection. One major issue was the
latency introduced during video processing and synchronization between the coach and trainee. To
address this, the system was optimized by reducing the size of transmitted data and fine-tuning
the server architecture to prioritize low-latency operations.

Another challenge involved creating a user-friendly interface for both the coach and the trainee.
On the coach’s side, it was essential to ensure the system’s ability to seamlessly capture and
process the video feed without disrupting the natural workflow. For the trainee, the bounding box
annotations and instructional overlays needed to be intuitive and clearly visible, even in varying
lighting conditions or when objects were partially occluded. These challenges were resolved by
thorough testing in diverse environments and implementing adaptable rendering techniques.

Lastly, the training dataset posed a challenge. The system relies heavily on the accuracy of
the YOLOv8 model, which in turn depends on high-quality annotated data. The initial manual
annotation of object boundaries using SAM2 was time-consuming. This issue was mitigated by
creating semi-automated pipelines for dataset generation, which significantly reduced the effort
required for dataset preparation while maintaining accuracy.

4.3 Lessons Learned

The project provided valuable insights into developing real-time AR systems. One key lesson was
the importance of optimizing data pipelines to minimize latency, especially in scenarios requiring
real-time interactions. It also highlighted the necessity of user-centered design when creating inter-
faces for both coaches and trainees. Feedback from users during testing helped refine the system,
ensuring that it met their practical needs.

Another significant takeaway was the critical role of robust dataset preparation in training accu-
rate object detection models. By leveraging tools like SAM2 and improving the dataset generation

5



process, we learned how to achieve high-quality annotations efficiently. Additionally, integrating a
Vision-Language Model (VLM) demonstrated the potential of AI-driven instructions in enhancing
user guidance, reinforcing the importance of leveraging state-of-the-art technologies to create a
seamless learning experience.

5 Conclusion & Future Work

5.1 Achievements

AssemblyKing successfully achieved its primary objectives of providing real-time AR-guided spatial
tutoring for assembly tasks. The system demonstrated effective synchronization between the coach
and trainee, enabling intuitive interactions through object detection and instructional overlays. By
leveraging cutting-edge technologies like Meta’s SAM2, YOLOv8, and a Vision-Language Model,
the system offered a robust, scalable, and adaptable solution for training in assembly and other
application domains.

The system also excelled in its adaptability to various contexts, showcasing its versatility in
domains such as mechanical assembly, cooking, and equipment repair. The use of AR significantly
enhanced the learning experience by providing visual guidance, reducing errors, and improving the
trainee’s understanding of tasks. The scalability to 1-to-n tutoring further solidified its potential
as a training platform.

5.2 Future Enhancements

While AssemblyKing achieved its core goals, several areas for improvement and extension remain.
One potential enhancement involves expanding the system’s scalability to include remote training
over the internet, allowing trainers and trainees to connect from different locations. This would
require further optimization of the video processing pipeline to handle higher latencies and varying
network conditions.

Another improvement could involve integrating more advanced computer vision techniques,
such as 3D object detection and pose estimation, to provide even more precise guidance during
complex tasks. Additionally, the Vision-Language Model could be expanded to offer contextualized
instructions that adapt dynamically to the trainee’s progress and errors in real-time.

Finally, creating a more extensive and diverse dataset would enhance the system’s adaptabil-
ity to new domains and objects. Incorporating user feedback into future iterations would ensure
continued improvements in usability and functionality. These enhancements would position Assem-
blyKing as a leading tool for AR-guided training across a wide range of industries and applications.

References

6


	Introduction
	System Design & Architecture
	Application Case Study
	Domain Application
	Versatility

	Challenges & Lessons Learned
	Technical Challenges
	Design Challenges
	Lessons Learned

	Conclusion & Future Work
	Achievements
	Future Enhancements


