

1.部分理论

电流和电压逆变

1.电流型逆变电路的特点:

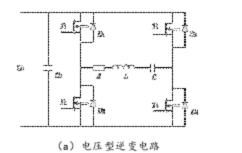
流型逆变器的直流电源经大电感滤波,直流电源可近似看作恒流源。逆变器输出电流为矩形波,输出电压近似看为正弦波,抑制过电流能力强,特别适合用于频繁加、减速的启动型负载。

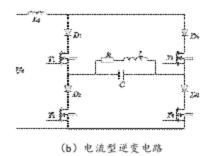
2.电压型逆变电路的特点:

电压型逆变器的直流电源经大电容滤波,故直流电源可近似看作恒压源,逆变器输出电压为矩形波,输出电流近似正弦波,抑制浪涌电压能力强,频率可向上、向下调节,效率高,适用于负载比较稳定的运行方式。

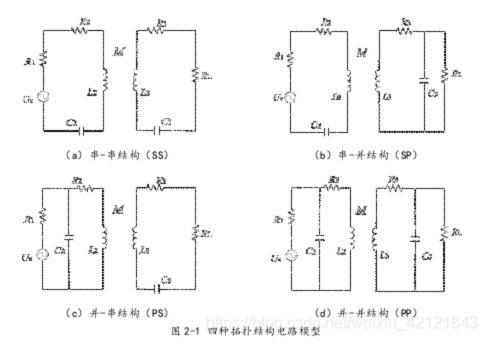
3.电流型逆变和电压型逆变区别?

电压型逆变: 1) 直流侧为电压源 2) 逆变输出电压波形为矩形波 3) 逆变桥都并联了反馈二极管。


电流型逆变: 1)直流侧为电流源 2) 逆变输出的电流波形为矩形波 3) 逆变桥不用反馈二极管。


不同点:

- 1、源不同,一个是电压源,一个是电流源
- 2、储能器件不同,一个是电容储能,一个是电感储能
- 3、输出波形不同,一个是输出电压为脉冲波,电流为正弦波。一个是输出电流为脉冲波,电压为正弦波
- 4、逆变器件不同,一个是全控器件,一个是半控器件即可


拓扑选择:

1.电压型逆变和电流型逆变

电压型逆变电路结构简单,对电路参数不敏感,适用于高频电路。故选择电压型逆变 2.两线圈结构

经论文中的仿真数据,串串结构效率和带负载能力最好,故选择之。效率最大时为谐振频率点。

3.电压型逆变中拓扑选择

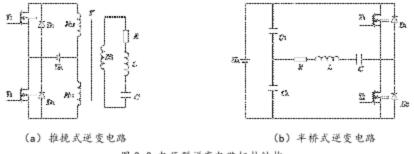


图 3-3 电压型逆变电路拓扑结构

推挽式逆变电路需要带中心抽头的变压器,且铜损严重。半桥式逆变电路主要用于小功率。而全桥逆变输出电压电流和功率均较高。

线圈选择

应选择谐振频率相同, 高品质因数的线圈, 以保证能量高效传输。

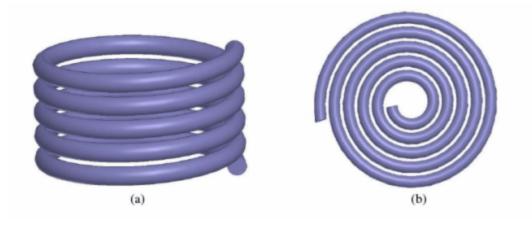


图 3-1 谐振线圈常用结构参考图

(a) 螺线管式谐振线圈:

(b) 平面螺旋式谐振线图

螺线管式线圈能产生均匀的磁场,具有良好的方向性,而且传输距离远、效率高, 缺点是体积较大。而平面螺旋线圈比较薄体积小,适于用在小型设备,但方向性较差。

另外,为了减少趋肤效应的影响,采用利兹线绕制线圈。金属线圈在高频条件下会产生趋肤效应,这也是导致寄生电阻增大的主要原因,会导致谐振线圈损耗增大和品质因数降低。线圈导线截面半径越小,其在高频下产生的寄生电阻也越大,因此为了减小线圈损耗,提高谐振线圈品质因数,在设计谐振线圈时,通常会选用线径较大的铜线或者漆包线。如何减小寄生电阻是谐振线圈设计时的一个重要环节,采用多股金属导线并联绕制的方式增大导线线

径,不仅能增加导线有效截面,有效减小高频条件下趋肤效应的影响,而且还能减小导线电阻,降低损耗,提高系统传递效率。

我们选择了两种线圈:

蚊香型, 电磁炉线圈:

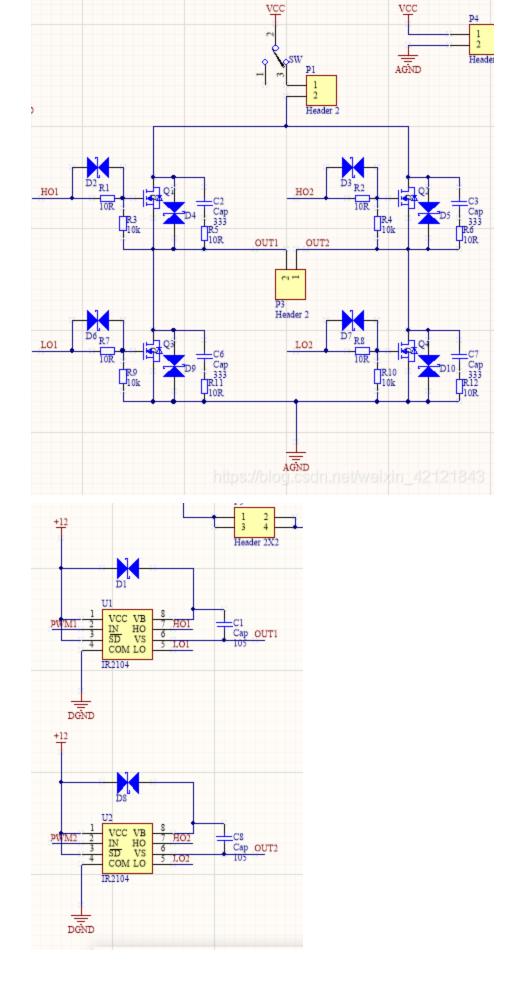
利兹线绕制, 螺线管型线圈

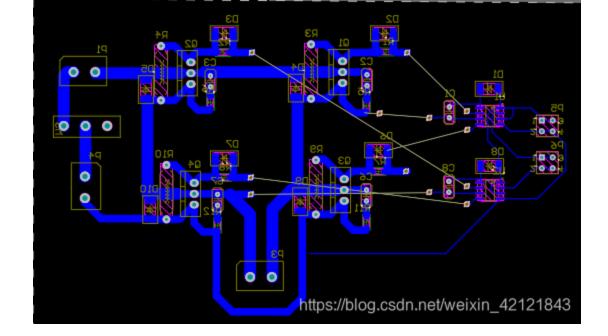
参数测量

35周多数产星:	OURSTORVBEGINS		
1.电磁炉线圈 50%	lork	150K	
L=97.4M	L=96.8H	1=97.294	
Q= 126.	Q=133.9.	Q=109.	
2. 類然管线图: 50%	100K	IOK	
2=26.38144	L=26 M.	4=26.3141	
Q=211.	Q=335	Q1=495	
L2 = 26.144	1=25-70 pt	Lo=26.1441	
Q= 194.	Os=336	Q= 501	
· / 螺纹软鱼型绒圈2:		Mary Alexander	
ROK.	100K	180K	
2=36.2mH	L=35.8 M	2=3644	

电容选择

电解电容有极性, 且高频特性差, 不可用。


陶瓷电容,独石电容比较精密,但电流电压耐受值不够,容易烧毁。


CBB电容的高频特性好,精密,耐高压,故采用之

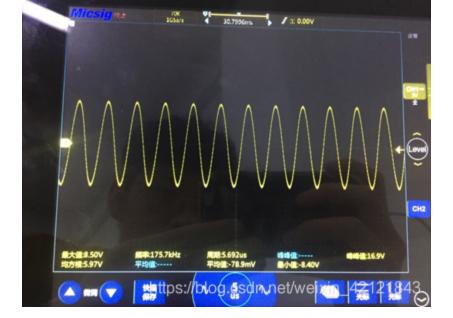
2.原理图及PCB

全桥逆变原理图

3. 波形及数据

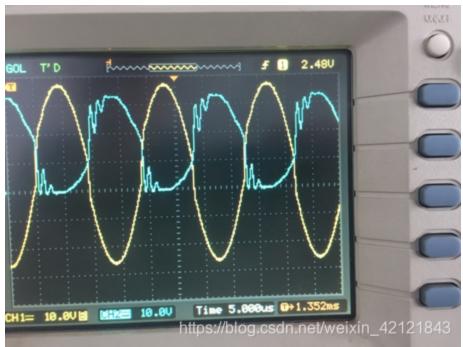
输出波形

驱动电阻10R,有震荡



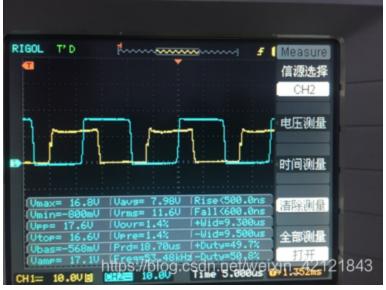
增加RC的阻尼,经测试,增加R至22欧时效果最佳

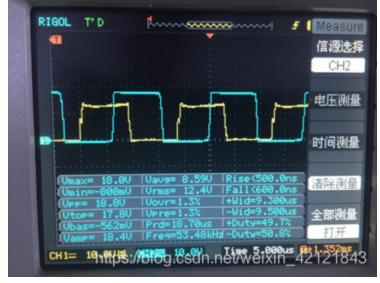
谐振时电容两端的电压,几乎是输入方波电压的两倍:输入占空比50的方波时


不是严格的谐振时: 电容两端仍为正弦波(幅值很小), 电感两端正弦波变形:

未到谐振点的电感波形:

不带负载时发射和接收端电感两端波形




可见近似为正弦波 带负载后波形

上图为当负载很小时,接收端电感电容两端波形。方波很不规律,增大负载后波形如下:各图为距离由近及远时测量,黄色是逆变输出端,蓝色为整流输入端。:

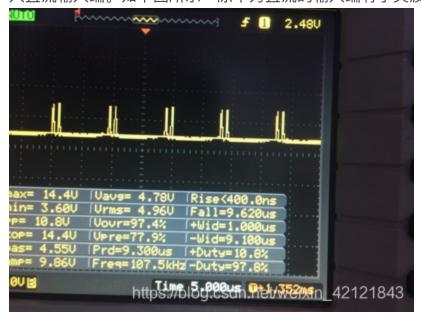
以上四张图依次是线圈(蚊香型,电磁炉线圈)密贴,间距1.5cm, 3.2cm, 4.7cm的波形,电感电容两端波形不规律,且幅值大:

上图中, 黄色是发射端电感两端的电压波形。 效率测量

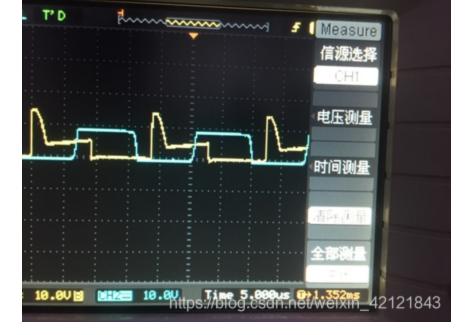
	(电磁频图)。			
DC输水 V	C槽等与KHZ, 古空間的	%。例如 1051). 北坡 整凑端榆川	髓」整緒	VA
3	0.1 3.6.0			6 0.09 11
8.9	0.22 10 ,0	13, -1		0.29 2
	0.28; 12,0	:3.8,-1		0.41 3
15	0.35: 18,0	14.8 -1.2	3.54	0.56 '38
16.2		15.4 -1.2		
两种国核的,分	霸3572时:	. West		
11.2V	0.23月 新年午221	0./65A 48.	8%	
13.97新夏	0.42A 8.58V	0.3360 60.7	%	
叛胜	的好的 13.4V 有时,DC新邓俊不模定,	17. 3.E. 10.1		
	1.5 1cm . 爱新:其2		输几个的被	
及新江; 7.1	V 0.36A. DO		260A 2641:	685%
1 9.8		9.35V 0.	36A 3	71.6%
1 151			56A	71.5%
1 171		,) a p	75%
- +-	-	the state of the s		
一 十一	Tan, 颜约250			
一 1 — 1 — 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tan, 频刻2552 DC编辑	· 被针:	the think	dra a struck
一 上一 好題相解出了A DC翻加	DC NAM	被押:	本商几本的出海 -被MOS卷又近到	伊非常教堂
- トー 対題相解 出 3 A D C Man 5 V 0.5 A	DCAMH 6.93V 0.274A	169%	一越れのをを不安然	·影為Mesty 不够
一 ← 一 好題相解出引 DC級n	DC NAM		转几、粉似液 越MOS 最不发热 故视高效率关极	·影為Mesty 不够

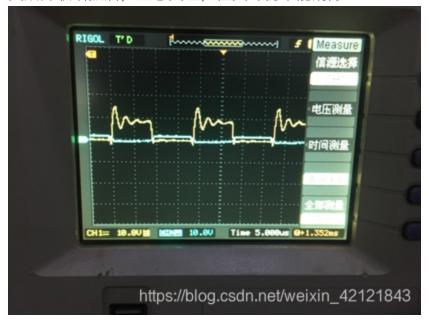
发展相能:4.1cm, DC新几	DC轮件	RSTORYS	数1:	道多Mos衛开面被母(10V的 有TV 然)
3.2V 0.39A		1684	57.3%	个句,力夫孩种山。
65V 0.8A		366A	5%	整数从些有发热。
9.1V 1.13A	11	53A.	08%	
18. [V 1-26/A	15-031 0.	593 A	70.3%	
俄图翰斯: 6.3 cm.	颜功.			ahter - 21 mm
PCARO	PCAME		独幸:	发起水 , 开通知"碰大
6.4V 0.77A	9.320 0	1.363A	68.6%	
7V 0.8A		0.48BA	/	前,原网格的: 1005开道尖鲜加好2
5.3V 0.66A.				传,电压源另一路有电路
371	1 10		1	口 逐利,省付3516被卖
			B	了个. 穿, 电压加引引输入格
			漏起	造家的决解
			解粉練	: 1. RC 吸液电路.
				2.70大电(22001年)
				3. 煮电阻温度 极功轴阻
				午.并联谐振.
			://blog.csd	5. 族线菌

可见,波形的规整很重要,可以大大降低损耗。


全桥逆变和整流模块效率测量

电路为: 逆变输出的方波, 通过MOS同步整流模块, 加在负载上。具体模块见模块笔记。


电源输几		密瓶端轮出(场线)) English on the same		
邨	速流	邨	电流	被军:		电激驱敌人动物道流的波激
5.8.	0.35	4.37	0.31	66.7%		但全桥差变剂强的始终良知
7.9	0.54	6.64	048	74.7%		Year WAR
9.0	10.61	7.86	0.56	80.2%		
10:2 1	0.72	8/2	0.66	80.2%		
12.6	0.92	11.7	0.87	87.8%		
13.8	11	13.6	1:04 bitto			et/weixin_42121843


当线圈相距很远的时候,漏感加大,电感上多余的能量影响了MOS开关,造成了很大的尖峰。且此尖峰进入直流输入端。如下图所示:原本为直流的输入端有了尖波

在输入端加入二极管之后,没有很大改善

变成并联谐振后, 互感变差, 但尖峰仍未能消除

解决方案:

- 1.提高频率,可以提高线圈耦合程度
- 2.用RCD等电路吸收之,但经试验,效果不好

目前仍未解决