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Abstract—Automated cyber defense (ACD) seeks to protect
computer networks with minimal or no human intervention,
reacting to intrusions by taking corrective actions such as
isolating hosts, resetting services, deploying decoys, or updating
access controls. However, existing approaches for ACD, such as
deep reinforcement learning (RL), often face difficult exploration
in complex networks with large decision/state spaces and thus
require an expensive amount of samples. Inspired by the need to
learn sample-efficient defense policies, we frame ACD in CAGE
Challenge 4 (CAGE-4 / CC4) as a context-based partially observ-
able Markov decision problem and propose a planning-centric
defense policy based on Monte Carlo Tree Search (MCTS). It
explicitly models the exploration-exploitation tradeoff in ACD
and uses statistical sampling to guide exploration and decision
making. We make novel use of graph neural networks (GNNs)
to embed observations from the network as attributed graphs,
to enable permutation-invariant reasoning over hosts and their
relationships. To make our solution practical in complex search
spaces, we guide MCTS with learned graph embeddings and
priors over graph-edit actions, combining model-free general-
ization and policy distillation with look-ahead planning. We
evaluate the resulting agent on CC4 scenarios involving diverse
network structures and adversary behaviors, and show that
our search-guided, graph-embedding-based planning improves
defense reward and robustness relative to state-of-the-art RL
baselines.

Index Terms—Automated cyber defense, Monte Carlo Tree
Search, Reinforcement learning.

I. INTRODUCTION

Automated cyber defense (ACD) systems are designed to
monitor network environments and execute corrective ac-
tions—such as host isolation, service restoration, decoy de-
ployment, and credential rotation—with minimal human in-
put [1], [2]. While reinforcement learning (RL) and deep
reinforcement learning (DRL) have demonstrated potential in
training defense policies within simulated environments [3],
[4], the approaches often face the challenge of balancing
exploration and exploitation [5]-[7] in complex networks with
large decision/state spaces, and thus require an expensive
amount of samples to learn a reasonable defense policy. As
modern cyber-adversaries become more sophisticated [8]-[10]
and leverage multi-step strategies. Existing solutions relying
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on RL and DRL struggle to capture multi-step look-ahead
defense planning while also meeting the required sample
efficiency for agile cyber defense.

To bridge this gap, we propose ACDZERO, a frame-
work for learning automated cyber defense policies through
Monte Carlo Tree Search (MCTS) and graph-based latent-
space planning. More precisely, we leverage MCTS, which
has demonstrated strong performance in multi-step reasoning
and complex planning problems [11] such as mastering chess
and board games [12]-[14]-to explicitly model the exploration-
exploitation tradeoff in ACD and use statistical sampling to
guide decision making. By building a dynamic model of
the ACD problem (in a latent graph-embedding space as
introduced later), each search consists of a series of simulated
ACD games of defense action self-play to traverse a tree from
root state to leaf state of the ACD game. Each simulation
proceeds by selecting in each node/state a defense action
with respect to a dynamically-updated upper confidence tree
(UCT) bound to balance exploration-exploitation. The final
game result of each rollout is then used to weight the nodes
in the ACD game tree and to update the UCT bounds for
learning a search policy with optimal rewards.

Unique challenges arise from applying MCTS to a complex
ACD environment like the CAGE Challenge 4 (CC4) [15],
involving multiple subnets, dynamic communications, random
initialization, and a large set of servers/hosts and defense
actions. We note that structural heterogeneity and unknown
environment dynamics due to partial observability lead to
significant challenges in representing the dynamic observations
and network states to learn a dynamic model in MCTS. This
dynamism and uncertainty render standard fixed-length vector
representations brittle and prone to failure when deployed
across varying network topologies [16]-[21]. To this end,
ACDZERO makes novel use of a Graph Neural Network
(GNN) as an invariant structural engine to encode network
entities as typed nodes and edges [22], [23]. This represen-
tation serves as the foundation for a learned latent dynamics
model, which enables MCTS to perform virtual” look-ahead
simulations without access to the ground-truth simulator [12].

Crucially, our architecture integrates this high-fidelity search
into a decentralized Actor-Critic framework. During training,
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Fig. 1. Overview of the ACDZero framework applied to the CAGE Challenge 4 environment. CAGE-4 simulates a high-fidelity enterprise network where
autonomous defenders must protect critical assets against adaptive adversaries in a partially observable, multi-agent setting. To address the brittleness of standard
reactive policies that degrade under topological changes, our approach treats defense not only as policy learning but as online decision-time planning. The
system first transforms local observations into attributed graphs (G'¢) to enable permutation-invariant reasoning over hosts and their relationships. Uniquely,
ACDZero utilizes a Monte Carlo Tree Search (MCTS) module (bottom right) to perform look-ahead planning within a learned latent space, simulating
alternative futures to discover optimal strategies. These high-quality search policies serve as distillation targets for the GNN-based Actor (top right), allowing
the agent to internalize strategic foresight while maintaining the inference speed required for real-time autonomous cyber defense.

the MCTS serves as a powerful policy improvement operator,
generating strategic targets that are distilled into a GNN-based
actor via policy gradient updates. This distillation process
allows the agent to internalize complex multi-step reasoning
within its neural weights. At deployment, the distilled policy
can be executed directly as a fast, reactive actor, retaining
the strategic foresight of search-guided training without the
computational overhead of real-time planning. ACDZERO is
implemented in the CC4 environment and evaluated against
state-of-the-art RL baselines.
Our contributions are summarized as follows:

e ACDZero Framework: We introduce a graph-
embedding-based MCTS framework that unifies
GNN-based state representation with a learned latent
dynamics model and an Actor-Critic distillation pipeline
for topology-robust planning.

o Formalization of Graph-Based POMDP: We formalize
ACD in CC4 as a partially observable Markov decision
process over dynamic graphs, necessitating representa-
tions that are strictly invariant to node permutation and
network scale.

« State-of-the-Art Performance: We demonstrate that
ACDZERO achieves a 29.2% improvement in defense
success over the current state-of-the-art graph-based base-
lines, while exhibiting superior convergence stability
across diverse and unseen network configurations.

o Empirical Analysis of Search-Guided Training:

Through extensive ablation studies, we quantify the con-
tributions of latent-space planning and policy distillation,
confirming that MCTS-guided supervision is the primary
driver for achieving strategic robustness in complex cyber
environments.

II. BACKGROUNDS

Automated Cyber Defense. ACD has transitioned from
traditional rule-based heuristics [1] toward RL frameworks
capable of discovering optimal defensive policies through
autonomous environment interaction [3], [24]-[26]. However,
the efficacy of RL in network security is often constrained by
state representation. Early approaches predominantly utilized
fixed-vector encodings, where network features are mapped
to static indices [27]-[30]. Such representations impose an
implicit dependency on node ordering; because they lack
permutation invariance, even a minor re-indexing of hosts
results in disparate feature vectors for functionally identical
network states, severely inhibiting generalization.

These architectural limitations are particularly pronounced
in high-fidelity benchmarks such as the CC4 [15]. Unlike
static environments, CC4 features a stochastically initialized
topology where the number of hosts (5-15 per subnet) and
active services (1-5 per host) vary across episodes. This
structural fluidity prevents agents from memorizing specific
configurations and demands strategies that are robust to topo-
logical shifts. To mitigate this, recent research has pivoted



toward graph-based representations [31]-[33]. By encoding
the network as an attributed graph—where entities are nodes
and relations are edges—defenders can leverage GNNs to
achieve the permutation invariance necessary for reasoning
about structural patterns across heterogeneous network con-
figurations [22].

Monte Carlo Tree Search. MCTS is applied widely to
solve planning problems through sequential decision-making
[34], [35]. A typical MCTS involves four phases, i.e., Selection
to choose actions from candidates via UCB-style strategies
[36], Expansion to sample new candidate actions for existing
nodes, Simulation to obtain the corresponding payoffs, and
Backup to update the cumulated returns along the search path.
We denote the state by s and action by a. For each node (s, a)
in the tree, there are statistics including the estimated value
®(s,a), visiting count N (s, a).

MuZero [12] is a classic MCTS framework learning an
internal dynamics model, allowing it to perform tree-based
planning without access to the environment’s ground-truth
rules or a simulator. This framework is composed of three
learnable components parameterized by 6: (i) a representation
function sg = hg(o1,...,0;) that transforms observations into
a latent state, (i) a dynamics function (sg,7rr) = go(Sk—1, %)
that predicts the next latent state and immediate reward, and
(iii) a prediction function (pg,vx) = fo(sk) which outputs the
policy prior and state value.

During the MCTS process, MuZero navigates the search
tree entirely within this learned latent space. Starting from
the root node, it applies a variant of the predictor Up-
per Confidence Bound (pUCT) [12] to select actions: a =

argmaxge 4 Q(s,a) + P(s,a)%cl where P(s,a)

is the prior probability from the policy head and c; is a
constant. Statistics along the search path are updated dur-
ing the Backup phase using a cumulative discounted payoff
Gy = Zi;lofk Y ry14+ + 7 Fvl. The mean action value
Q(s,a) is then updated as the average of these bootstrapped

returns: Q(s,a) = —N(s"}\),zi’)‘ﬁfc’vt*’“.

III. METHOD
A. Problem Formulation

We formalize the automated cyber defense task within
the CC4 networks environment as a Decentralized Partially
Observable Markov Decision Process. Therefore the problem
can be defined by the tuple M = (NS, A4, O, T, R, ). Here,
N denotes the set of defender agents, S the global state space
encompassing network topology and host compromise status,
A the joint action space, and O the observation space. The
transition function 7 : § X A — A(S) and reward function
R : Sx.A — R capture the dynamics arising from interactions
among red (attacker), green (user), and blue (defender) agents.

Due to partial observability, each agent 7 € N receives only
a local observation o;,” € O corresponding to its assigned
subnet. Therefore, a key challenge is that the network topology
is stochastically initialized at each episode, causing the dimen-
sionality of S and O to vary. To address this, we frame policy
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Fig. 2. ACDZERO framework. Graph observations are encoded into latent
states. MCTS performs tree search with learned dynamics g to generate
improved policy and value estimates (p, v), which are distilled via prediction
head f into the actor 7y for action selection.

learning over dynamic graphs rather than fixed-dimensional
vectors, requiring representations invariant to input size and
node permutation.

B. State Representation and Environment Interface

To bridge CC4 simulation data and the graph-based policy
architecture, we implement a specialized Environment Inter-
face that (i) constructs semantically rich attributed graphs from
local observations, and (ii) maps policy decisions to executable
simulation commands.

At each timestep ¢, the interface transforms the agent’s local
observation into an attributed graph G; = (V, &, X;), where
V), denotes the node set, & the edge set, and X, € RIV¢/*? the
d-dimensional node feature matrix. We represent environment
entities as typed nodes: Hosts (servers and workstations),
Subnets (network segments), Ports (services and connections),
and Files (analyzed assets). Each node v € V; encodes
type-specific attributes—hosts include OS metadata (version,
distribution, architecture) and role indicators; ports encode
process information (port number, service type) and status
flags (ephemeral, default, decoy); files capture analysis meta-
data (density, signature status). Categorical attributes are one-
hot encoded.

A critical component is inter-agent communication integra-
tion. CC4 restricts communication to 8-bit messages, which
the interface parses and encodes as features of corresponding
Subnet nodes, enabling implicit coordination without central-
ized training. Environment-wide variables are encoded into a
global context vector g; € R% for temporal and phase aware-
ness. For action mapping, the interface abstracts simulator ac-
tions into graph operations: defensive operations (Analyze,
Restore, DeployDecoy) target Host nodes, while net-
work operations (AllowTraffic, BlockTraffic) mod-
ify edges between subnet nodes. This decoupling enables
seamless adaptation to variable network topologies.

C. ACDZERO

Our proposed algorithm, ACDZERO , adopts a MuZero-
like framework [12] for decentralized cyber defense. The
core objective is to employ MCTS as a policy improvement
operator that enhances a GNN-based PPO [37] agent. MCTS



performs lookahead search in learned latent space, generating
an improved policy mnes and value estimates that are distilled
into decentralized actor-critic networks.

In our ACDZERO , network state evolution is modeled as
transitions in a latent search tree. For each agent ¢, search
initializes at a root node representing the latent belief s; o =
he(o<;), where hy is a GNN-based representation network
processing graph-structured observation history o<;. To cap-
ture dependencies in stochastically initialized CC4 topologies,
hy employs two-stage hierarchical aggregation: Intra-Entity
Aggregation pools port and file attributes into host embed-
dings hy,s¢, then Inter-Subnet Aggregation propagates these
to subnet nodes, creating a representation invariant to node
permutations and network size. Tree edges represent defensive
actions a € A(i), and child nodes are latent states predicted
by dynamics function s; 41 = go(S¢k,at+r). To handle
variable action dimensionality, go projects each action into
fixed-dimensional embeddings processed by a GRU, capturing
temporal dependencies across heterogeneous topologies. The
algorithm integrates a reward function r; = Rg(S¢k, Grtk)
and prediction head (py i, ve,x) = fo(Ser) to forecast rewards,
policy priors, and state values.

a) MCTS Procedure: To perform multi-step reasoning
in CC4’s latent space, each agent executes a fixed number of
look-ahead simulations before taking real actions, mimicking
rehearsal of attack-defense trajectories. The procedure follows
three iterative phases:

o Selection: Starting from root node s;, the agent tra-
verses the tree by selecting actions balancing exploitation
and exploration. We employ the pUCT rule [12] with
Dirichlet noise. At each node s, the agent selects action
a* according to:

Zb N (57 b)

Q(s,a) + P(s,a) - mcl

a* = arg max
ac Al

1)
where (s, a) tracks the action’s historical performance,
and P(s,a) from prediction head fy represents the
agent’s prior intuition. Selection continues until reaching
a leaf node.

o Expansion and Evaluation: At leaf node s,
ACDZERO performs virtual expansion using learned
dynamics. Unlike traditional MCTS requiring a simulator,
ACDZERO uses dynamics function gg to generate the
next latent state s;;41 = go(Se1,ai41) and predicts
reward 7 ;. Simultaneously, prediction head fy evaluates
the node to obtain value v, ;11 and policy prior py 41,
enabling anticipation of defensive operations without
environment interaction latency.

o Backup: Evaluation results propagate backwards to up-
date ancestor node statistics. For each state-action pair
(s,a), we increment visit count N (s, a) and update mean
value (s, a) using n-step bootstrapped return G j:

I—k—1

Gik= Y Viires +7' o, 2)
=0

N(s,a)Q(s,a) + G
N(s,a)+1

Q(s,a) + 3)
where v;; is the terminal value and 7 are rewards pre-
dicted by Ry. This recursive update ensures root statistics
converge toward an optimal defensive strategy, providing
robust targets for policy distillation.

b) Optimization Objectives.: The training ACDZERO is
formulated as multi-task learning, integrating MCTS’s delib-
erate reasoning with PPO’s reactive efficiency. Each agent
minimizes a joint loss, ensuring stable updates, effective
distillation, and accurate latent dynamics:

Liotat = Lppo + MrLaistitt + Mo Lvalue 4

where A\, and )\, are scaling coefficients that balance the
contribution of each objective.

o Decentralized Policy Optimization (Lppp): To main-
tain baseline stability in the non-stationary multi-agent
environment, we employ the standard clipped surrogate
objective:

Lppo = E; {min(ri(0) Ay, clip(r4(0),1 — e, 1 4 €)A,)

®)
is the probability ratio and

7o (at]or)
o, (at|ot)

A, is the advantage estimated by the GNN-critic. This
loss ensures that the agent’s policy does not deviate
excessively from its previous iterations, facilitating safe
exploration.

o MCTS-Guided Policy Distillation (Lz;s::;): A pivotal
feature of ACDZERO is the use of MCTS as a “policy
improvement” operator. The search process yields a visit
count distribution at the root node, which constitutes an
improved search policy e (als) o< N (s, a)/™. We use
the Kullback-Leibler (KL) divergence to force the GNN
actor 7y to internalize the multi-step look-ahead logic:

Laistitt = Bt [Dicr (Tmets(+]5¢) || 70 (+|0¢))] 6)

By minimizing this loss, the lightweight actor learns
to approximate the high-fidelity search policy, allowing
it to exhibit “strategic foresight” even during real-time
inference when the search tree is omitted.

o Latent Dynamics and Value Prediction (L,,;,¢): To
ensure the latent space provides a reliable foundation
for planning, the dynamics function gy, the reward head
7, and the value head v are optimized to minimize the
prediction error over an unrolled trajectory of length K.
This process facilitates indirect optimization: the dynam-
ics model is not supervised by raw state observations but
is instead shaped by its utility in predicting rewards and
long-term values. This ensures that the latent transitions
capture the most semantically relevant features for cyber
defense, such as host compromise status and subnet
connectivity.

where 7:(0) =

Through joint optimization, ACDZERO bridges slow delib-
eration and fast execution. During training, MCTS supervises



the GNN to learn complex defensive patterns; during deploy-
ment, the agent maintains neural network inference speed,
achieving robustness against high-velocity cyber-attacks.

IV. RESULTS

We evaluate ACDZero on the CAGE Challenge 4 environ-
ment, comparing it against tabular RL baselines (DQN, PPO)
and the graph-based GCN method. Our experiments demon-
strate that combining MCTS-guided planning with graph neu-
ral networks yields substantial improvements in both final
performance and sample efficiency.

A. Experimental Setting

All methods are evaluated on CAGE Challenge 4, a multi-
agent cyber defense scenario where five blue agents defend
against adaptive red adversaries across four network zones.
The network topology is stochastically initialized at each
episode, with 5-15 hosts per subnet and 1-5 services per
host. Following the official protocol, we evaluate against
FiniteStateRedAgent over 100 episodes of 500 timesteps each,
reporting mean reward and standard deviation.

We compare against: (1) DQN and PPO using fixed-vector
representations via the EnterpriseMAE wrapper, and (2) GCN,
a graph-based method using graph convolutional networks,
as they have announced, ranked Sth on the official CAGE-4
leaderboard.

ACDZero uses a GNN backbone with 256-dimensional
hidden layers and 128-dimensional embeddings. MCTS per-
forms 16 simulations per action with dynamic ¢; scheduling
(cbase = 19652, cippiy = 1.25). During training, we apply
Dirichlet noise (« = 0.3, ¢ = 0.25) and use temperature
7 = 1.0; during evaluation, 7 = 0.1. The joint loss uses
Ar = 0.5 and A\, = 0.5. We train with 5 parallel workers
using PPO clipping € = 0.2 and discount factor v = 0.99.

B. Main Result

Table I presents the final performance of all methods.
ACDZero achieves a mean reward of —150.03 &+ 19.85,
representing a 29.2% improvement over the GCN baseline
(—193.68 £ 21.07). The improvement demonstrates the ef-
fectiveness of integrating MCTS-guided planning with graph-
based policy learning, which stems from MCTS systematically
exploring multi-step defensive strategies, policy distillation
providing high-quality training targets, and learned dynamics
enabling anticipation of attacker behavior. DQN and PPO
obtain mean rewards of —606.20 and —597.28, respectively,
highlighting the fundamental limitation of fixed-vector rep-
resentations: they cannot generalize across varying network
topologies because they implicitly memorize specific node
orderings.

Beyond final performance, ACDZero exhibits 5.8% lower
variance (£19.85 vs +21.07) than GCN, indicating more
consistent defense across diverse network configurations. The
MCTS stable planning framework is adaptable to different
topologies, and the learned strategies capture generalizable
defense principles rather than topology-specific heuristics.

Training Performance: ACDZero vs Baselines on CAGE-4
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Fig. 3. Training performance on CAGE Challenge 4. ACDZero converges
faster (~30k episodes) and to better performance (—150) than the GCN
baseline (—193.68 at ~40k episodes). Tabular methods plateau early at
suboptimal performance. Shaded regions indicate standard deviation.

Figure 3 shows learning curves over 50,000 episodes.
Tabular methods plateau within 10,000 episodes at —600,
while GCN continues improving until 40,000 episodes
(—193.68), demonstrating that permutation-invariant process-
ing extracts topology-independent strategies. ACDZero con-
verges at 30,000 episodes (25% faster than GCN) with superior
performance. This acceleration stems from MCTS providing
multi-step search supervision rather than noisy single-step
rewards. Training requires 2.5X more computation per step
than GCN, but fewer episodes yield comparable total time. At
inference, ACDZero uses only 7wy without MCTS, achieving
reactive-speed decision-making.

C. Ablation Study

To isolate the contributions of individual components, we
systematically remove key elements of ACDZero. Table II
summarizes the results.

Removing MCTS (using only the GNN-based PPO agent)
reduces performance to —193.68, equivalent to the GCN
baseline. This 29.2% performance gap directly quantifies the
benefit of search-guided planning. Disabling policy distillation
while retaining MCTS yields —175.23 4 23.41, demonstrat-
ing that knowledge transfer from search to policy network
provides substantial gains beyond using MCTS for action
selection alone. Removing Dirichlet noise results in —162.45+
20.72, showing that stochastic root exploration is important for
discovering diverse defensive strategies. Using fixed ¢; = 1.25
instead of dynamic scheduling yields —158.91 4 21.33, indi-
cating that adaptive exploration control provides modest but
consistent improvements.

V. CONCLUSION

We presented ACDZero, a graph-guided planning frame-
work combining graph neural networks with Monte Carlo
Tree Search for automated cyber defense. ACDZero addresses
topology generalization and multi-step reasoning challenges in
dynamic network environments. By combining graph neural



TABLE I
PERFORMANCE AND INTERPRETABLE CYBERSECURITY METRICS ON CAGE CHALLENGE 4.

Method Reward Clean Hosts Non-Escalated Recovery Prec.  Mean TTR Impact Count Recovery Error
(meanzstd) (ratio) (ratio) (TP/TP+FP) (timesteps) (per episode) (%)

DQN (Tabular) —606.20 £ 43.22 0.19 0.82 0.12 142.3 9.84 88

PPO (Tabular) —597.28 +41.98 0.21 0.84 0.14 138.6 9.51 86

GCN —193.68 £+ 21.07 0.74 0.96 0.61 58.7 2.45 39

ACDZero —150.03 + 19.85 0.82 0.98 0.71 46.2 1.28 32

TABLE 11
ABLATION STUDY ON ACDZERO COMPONENTS.

Configuration Mean Reward Std.

ACDZero (Full) —150.03 +19.85
w/o MCTS —193.68 +21.07
w/o Policy Distill —175.23 +23.41
w/o Dirichlet Noise —162.45 +20.72
w/o Dynamic ¢ —158.91 +21.33

networks’ representational flexibility with tree search’s de-
liberative reasoning, ACDZero achieves robust performance
across diverse configurations while maintaining computational
efficiency for real-time deployment. Evaluation on CAGE
Challenge 4 demonstrates 29.2% performance improvement
over the state-of-the-art GCN baseline, with 25% faster con-
vergence and 5.8% lower variance. Looking ahead, ACDZERO
method enables two promising extensions: (1) integrating with
pre-trained policies to leverage domain knowledge as MCTS
priors, accelerating exploration and convergence, and (2) learn-
ing the graph-based dynamics model from offline trajectories
collected by existing systems, such as rule-based defenders
or learned baselines, thereby reducing online interaction costs
while preserving adaptive planning capabilities.
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