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Abstract— We present the design and implementation of
HASTA (Hopper with Adjustable Stiffness for Terrain Adap-
tion), a vertical hopping robot with real-time tunable leg
stiffness, aimed at optimizing energy efficiency across various
ground profiles (a pair of ground stiffness and damping
conditions). By adjusting leg stiffness, we aim to maximize
apex hopping height, a key metric for energy-efficient vertical
hopping. We hypothesize that softer legs perform better on
soft, damped ground by minimizing penetration and energy
loss, while stiffer legs excel on hard, less damped ground by
reducing limb deformation and energy dissipation. Through
experimental tests and simulations, we find the best leg stiffness
within our selection for each combination of ground stiffness
and damping, enabling the robot to achieve maximum steady-
state hopping height with a constant energy input. These results
support our hypothesis that tunable stiffness improves energy-
efficient locomotion in controlled experimental conditions. In
addition, the simulation provides insights that could aid in
future development of controllers for selecting leg stiffness.

I. INTRODUCTION

While robotic locomotion can be optimized for energy
efficiency on a single type of terrain, maintaining that effi-
ciency across varying terrains poses a significant challenge.
In nature, humans [1], [2] and animals [3], [4] dynamically
adjust the stiffness of their limbs to adapt to changing ground
conditions, enabling more energy-efficient movement across
diverse surfaces. Inspired by this, researchers have explored
tunable stiffness in robotics to improve adaptability and
performance in diverse environments.

1) Tunable Stiffness: Tunable stiffness in robotics can
be achieved through two primary methods: software-based
virtual compliance and hardware-based variable stiffness ac-
tuators. Software-based virtual compliance, implemented via
impedance control with force or positional feedback, allows
real-time stiffness tuning through various control strategies,
resulting in spring-like dynamics. Examples of this approach
can be seen in robots like ANYmal [5], Minitaur [6], and
MIT Cheetah [7]. These systems benefit from fast response
times due to the low-gearing of direct-drive motors [8],
[9], but they also suffer from rapid heating due to joule
losses [10]. Moreover, software-based solutions lack the
energy storage benefits of passive compliance and require
higher computational resources [11], [12].
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Fig. 1. Anatomy of the (a) HASTA Robot, (b) tunable stiffness actuator, (c)
tendon-driven actuator (highlighting the tendon), and (d) ground emulator.

On the other hand, hardware-based tunable stiffness mech-
anisms use mechanical designs integrated with actuators to
physically alter the system’s mechanical properties. These
systems offer advantages such as reduced need for active
energy input [13], [14], [15], enhanced stability and adapt-
ability, and the ability to reduce high-impact forces [9], [16].
However, they tend to be larger and heavier due to their
complex mechanisms and often have slower response times
for real-time adjustments [17].

In this work, we introduce HASTA (Hopper with Ad-
justable Stiffness for Terrain Adaption), a vertical hopper
with tunable stiffness achieved through a pneumatic bellows
actuator developed in our previous work [18]. This system
allows us to explore how stiffness adjustments in the compli-
ant leg can enhance locomotion performance, offering energy
storage benefits, improved dynamic response, and reduced
weight and control complexity by eliminating the need for
external air sources. In the context of vertical hopping, we
aim to achieve energy-efficient locomotion, where energy
efficiency is defined by the steady-state hopping height for
a given fixed input energy.

2) Energy-efficient Locomotion on Various Ground Pro-
files: Locomotion across diverse ground conditions requires
balancing trade-offs between safety, robustness, workspace,
and energy efficiency, making it a multi-objective optimiza-
tion problem. As a first step, this work focuses on energy
efficiency, investigating how tunable stiffness can optimize



hopping performance across different ground profiles.
For analytical purposes, the ground is often modeled as a

network of springs and dampers [17], [19], [20]. While re-
search on tuning leg stiffness for different ground conditions
exists, it has primarily focused on modeling and addressing
the spring component of the ground [21], [17], [19], [22],
[23], with limited exploration of damping effects, particularly
in real-world scenarios. We argue that incorporating the
damping component is essential for programming energy-
efficient locomotion, as it influences energy dissipation and
overall system performance.

Building on the work in [24], we further investigate
energy-efficient vertical hopping on ground profiles with
programmable stiffness and damping, with a focus on tuning
stiffness in physical hardware to optimize energy efficiency.
In this paper, we hypothesize that during vertical hopping,
softer legs are more effective on soft, damped ground,
minimizing penetration and energy loss, while stiffer legs
perform better on hard, less damped ground by reducing limb
deformation and energy dissipation. To our knowledge, this
is the first study to systematically explore hardware-based
tunable stiffness in a monopedal hopping robot across a range
of both ground stiffness and damping conditions.

We validate our experiment through a simplified mass-
spring-damper simulation, which demonstrates similar be-
havior to our experimental findings. Additionally, we explore
how parameters such as leg damping and energy input affect
performance, offering deeper insights into system behavior
across different ground profiles. This simulation framework
can also guide the selection of optimal stiffness settings in
controllers for energy-efficient locomotion.

3) Contribution and Organization: In summary, our con-
tributions are:

1) Development of HASTA, a dynamic vertical hopper
with real-time tunable stiffness for exploring various
ground profiles. It is equipped with one actuated degree
of freedom (DOF) for tendon-driven actuation and
three actuated DOFs for adjusting leg stiffness.

2) Real-world characterization of the relationship between
leg stiffness and performance across different ground
profiles. This characterization shows that as ground
stiffness increases or damping decreases, stiffer legs
reduce energy loss and achieve higher hopping heights.

3) Validation of a simulator for the described characteri-
zation, demonstrating that the simulation can be used
to guide controllers in selecting optimal leg stiffness.

The paper is organized as follows: Sec. II defines the
problem statement and the robotic task. Sec. III introduces
the robot platform and outlines the experimental procedure.
Sec. IV describes the simulation setup and environment. The
results are presented and discussed in Sec. V. Finally, Sec. VI
offers conclusions and directions for future work.

II. DEFINITION AND PROBLEM STATEMENT

We aim to investigate how tunable stiffness in a robot’s
leg can be utilized for energy-efficient locomotion across
varying terrains. In this study, we constrain the locomotion
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Fig. 2. Task definition (a) still diagram of the hopper and ground emulator
(b) state machine of the simulation. The touch-down and lift-off events
conditions differ slightly in this paper due to physical constraints, where
the yellow and green text boxes indicate the guards for the simulation and
the experiments, respectively.

task to vertical hopping using a monopedal robot with a
tunable stiffness leg, as this setup captures the fundamental
interaction between leg stiffness and ground properties while
isolating it from complexities such as gait dynamics and
multi-legged coordination. Our goal is to demonstrate that
an optimal leg stiffness setting exists, allowing the robot
to achieve the maximum steady-state hopping height on
different terrain types, given a constant energy input. We
argue that this steady-state hopping height is directly related
to energy-efficient hopping.

The system of interest consists of a vertical hopper in-
teracting with the ground (Fig. 2 (a)). The vertical hopper
is constrained to vertical motion and consists of a body
mass mb and a toe mass mt, connected by a compliant leg
composed of a leg spring with tunable stiffness kl and an
intrinsic damper with damping coefficient dl. The primary
mode of operation involves storing and releasing energy
in the compliant leg to propel the hopper upward, with
tunable stiffness to manipulate energy storage. The ground is
modeled as a flat surface on a Hookean spring with a spring
constant kg and a damper with a damping coefficient dg . The
ground profile is defined by the pair (kg, dg).

We define a vertical hopping task using a state machine
depicted in Fig. 2 (b), first introduced in [25]. During the
flight phase, the leg spring is compressed to a controlled
deformation p, storing potential energy. When the hopper
touches down, i.e., when the toe makes contact with the
ground, the hopper transitions to the stance phase. In the
stance phase, the pre-compressed spring extends back to
its original rest length, releasing energy into the ground
and propelling the hopper upward. Once the toe leaves the
ground, or lifts off, the hopper re-enters the flight phase.
We define the steady-state apex hopping height hapex as the
maximum vertical displacement reached by a vertical hopper



after the hopping height has stabilized.
We aim to demonstrate that for a given amount of energy

input — provided as potential energy Ein — there exists an
optimal leg stiffness setting that allows the hopper to achieve
the maximum jump height on various terrain types, or

Problem 1. Given a vertical hopper, a constant input poten-
tial energy Ein for each hop, a set of achievable leg stiffness
values {kl}, and a set of ground profiles {(kg, dg)}, find the
leg stiffness from {kl} that maximizes the steady-state apex
height hapex for each ground profile in {(kg, dg)}.

We will address this problem experimentally through our
designed vertical hopper, called HASTA (Hopper with Ad-
justable Stiffness for Terrain Adaption). HASTA is capable
of hopping using its compliant leg, which features tunable
stiffness. Additionally, we construct a simulation to validate
our experimental findings and explore optimal leg stiffness
configurations under different conditions. Finally, we propose
a strategy to enable energy-efficient hopping for a vertical
hopper by selecting the leg stiffness that maximizes the apex
height for each ground profile.

III. EXPERIMENT

We present the design and implementation details of the
robot and ground emulator, followed by a description of the
experimental setup and procedure to validate Problem 1.

A. Robot Platform: HASTA

HASTA (Hopper with Adjustable Stiffness for Terrain
Adaption) is a vertical hopper that can change its leg stiffness
during execution time, as shown in Fig. 1. The design is a
modification of the REBO Hopper [25] with an additional
tunable stiffness actuation. The hopper robot is mounted on
a vertical rail to constrain its motion to vertical hopping.
HASTA comprises four main subsystems: (a) the tunable
stiffness system, (b) the tendon actuation system, and (c)
the mechatronic system. The robot’s specifications are listed
in Table I and the infrastructure are shown in Fig. 3.

The tunable stiffness system consists of three pneumatic
bellows actuators that adjust stiffness by a factor of 1.43

TABLE I
SPECIFICATIONS AND PARAMETERS

Component and symbol Properties

HASTA specification
Leg spring rest length, l 97.5mm
Body mass (without toe), mb 2.5kg
Toe mass, mt 0.3kg

Experiment parameters
Leg Stiffness, kl 3351, 4279, 5341 (N/m)
Ground Stiffness, kg 2401.7, 3410.8, 4420 (N/m)
Ground Damping Coefficient, dg 17.1, 35.2, 53.3, 71.4 (Ns/m)
Energy Input, Ein 0.97 (J)

Simulation parameters
Leg Stiffness, kl 3000, 4000, 5000 (N/m)
Leg Damping Coefficient, dl 30, 35, 40 (Ns/m)
Ground Stiffness, kg [2400 : 200 : 5400]* (N/m)
Ground Damping Coefficient, dg [15: 5 : 75]* (Ns/m)
Input Energy, Ein 1, 1.56, 2.25 (J)

∗[A:B:C] represents the value range from A to C with the increment of B
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Fig. 3. Infrastructure of HASTA

without requiring an external air source. Each actuator com-
prises two bellows: the spring bellows, whose stiffness varies
with pressure, and the air chamber bellows, which regulates
pressure through deformation. Further details on stiffness
control can be found in [18].

The tendon actuation system uses a brushless DC motor
(T-Motor U8 KV100) to drive a UHMWPE tendon (Emma
Kites) through the compliant leg. One end of the tendon
is attached to a motor-mounted pulley (7.5mm radius,
3D-printed carbon fiber) and the other to a 2.5 in semi-
hemispherical silicone toe. Due to the leg’s compliance and
varying tendon spool radius, leg compression p depends on
both the motor angle θm and leg stiffness kl. A lookup
table p = fp(θm, kl) was experimentally generated to relate
pre-compression p to θm and kl. A proportional-derivative
(PD) feedback control loop is implemented on the motor for
position control with encoder data. The controller is able
to maintain compression with an error less than 2% in all
tests for leg stiffness ranging from 3351N/m to 5341N/m,
and pre-compression up to 23mm. A silicone-molded force
detection pad with a touch sensor for quick ground detection
is placed between the toe and leg. The aluminum housing
ensures both structural integrity and light weight.

The mechatronic system consists of four microcontrollers.
The primary controller is a Raspberry Pi 3B+, which controls
the tendon-driven motor via the mjbots pi3hat and motor con-
trol board (https://mjbots.com/), and transmits collected data
to the user via Wifi. The system includes three subsystems:
An Arduino Nano Every, which controls three DC motors in
the tunable stiffness actuation system; A Raspberry Pi Pico,
responsible for reading high-frequency sensory feedback,
including air pressure in the tunable stiffness actuator and
voltage from the touch sensor; An ESP32 Feather, used
to measure current draw and voltage from the robot, and
send feedback data to the user via Bluetooth. The system
is powered by a 14V/10A supply, with voltage regulated
for different subsystems including the computing units, the
sensors, and the actuators via power breakout boards.

B. Ground Emulator

We use a ground emulator, previously developed by S.
Roberts and detailed in [26], to precisely and systematically
control ground properties, replicating a surface modeled as
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a parallel spring-damper system. The ground emulator uses
a five-bar-linkage mechanism with link lengths l1 and l2, as
depicted in Fig. 4. The ground surface is mounted on a linear
rail to constrain it to vertical motion, and the height rg is
controlled by two motors’ angle θg . A Raspberry Pi 3B+ is
deployed for motor control and can be run remotely by the
user through a Wi-Fi connection.

The forward kinematics of the system mapping the motor
angle θg to the ground surface position rg can be written as

rg = −l1 cos θg +

√
− l21

2 + l22 +
l21
2 cos 2θg. (1)

The required motor torque τm is then computed as:

τm = F · drg
dθg

, (2)

where F = Kp∆rg +Kdṙg is the control force based on a
proportional-derivative (PD) controller with the proportional
(Kp) and derivative (Kd) gains, ∆rg is the position error,
and drg/dθg is the Jacobian.

To characterize the actual stiffness and damping coeffi-
cients of the ground emulator, we designed an experiment
to map the controller’s proportional gain (P gain, Kp) and
derivative gain (D gain, Kd) to the corresponding equivalent
stiffness and damping values. We measured the oscillating
positional trajectories of the ground surface under 3 different
weights (mw), across 5 different Kp and 5 different Kd

values. The data were fitted to an underdamped mass-spring-
damping model to determine the emulated stiffness and
damping ratio. A marker on the weight’s center was tracked
using “Tracker” (https://physlets.org/tracker/). In each trial,
the weight was manually pushed down and released to
oscillate until they stopped. Each trial was repeated three
times, and the trajectory was fitted to the underdamped
harmonic oscillator equation:

r(t) = A exp(−βt) cos
(√

α− β2 t+ ϕ
)
− g

α , (3)

where A represents the oscillation amplitude, α = kg/mw

and β = dg/(2mw) relate back to the system’s stiffness and
damping, and ϕ is the phase angle. The term g/α accounts
for the gravitational effect on the system. The segmented
trajectory data was fit to this model using MATLAB’s fit
function, and the parameters A, α, β, and ϕ were estimated,
allowing us to calculate kg and kl. The R2 value of the fit for
the entire experiments is above 0.9, indicating the accuracy
of the estimation. We then performed a linear fit across all the

75 data sets and obtained the two mappings: kg = fk(Kp)
and dg = fd(Kd).

C. Experimental Methodology

We aim to demonstrate that, with a constant energy input,
the robot achieves different steady-state hopping heights for
various programmed leg stiffness settings across different
ground profiles (kg, dg). To account for energy loss during
hopping, we pre-compress the leg spring by a distance p =√
(2Ein/kl) to inject energy into the hopper. We set the

input energy Ein = 0.97 J, and this value remains constant
throughout all tests.

1) State machine: The same state machine in Fig. 2 with
slightly different guard conditions controls the HASTA robot.
Starting with the initial state, the robot enters the flight
phase after detecting a free fall and compresses its leg. Upon
ground impact, sensed by a toe-embedded touch sensor, it
transitions to the stance phase, where its leg tries to return to
the uncompressed state. Due to the difficulty of detecting lift-
off, a fixed time-based trigger of 150ms is used to transition
the robot into the flight phase. Camera data confirm that this
duration allows full leg extension and energy transfer. Data
logging begins after three impacts to ensure a steady state
and stops after a preset number of impacts.

2) Procedure: Control gains of the ground emulator were
selected using the lookup table from Sec. III-B to achieve
the desired stiffness and damping. The selected parameters
encompass properties of common surfaces, such as rubber
and foam. Leg stiffness were controlled following the method
in [18] with parameters from Table I. While we cannot con-
trol or measure the leg’s damping properties, our simulations
confirm that trends remain consistent despite this limitation.

Three visual markers tracked the robot (ground, body, leg),
with an LED indicator syncing visual and sensor data. A
240Hz slow-motion camera recorded the process, and the
robot was manually released for hopping. After three hops,
data collection started, capturing power, motor feedback, and
sensor data. Post-test, video recordings were calibrated in
MATLAB, and trajectories were extracted with Tracker.

IV. SIMULATION

We construct a simulation of a vertical hopper hopping
with different leg stiffness and various ground parameters,
based on the state machine in Fig. 2. Given a constant
energy input, we investigated the apex height of the steady-
state hopping motion as a performance metric to evaluate
the system’s efficiency. Additionally, we examined how the
apex height changes with variations in leg stiffness, damping
coefficients, and input energy.

The system has two states, and the dynamics of the system
during the flight phase can be expressed as follows:

mbẍb = Fl −mbg

mf ẍf = −Fl −mfg,
(4)

where Fl = kl(l− p− xb + xt)− dl(ẋb − ẋf ) is the internal
force of the leg. The transition from the flight phase to the
stance phase occurs when the ground impact is detected,



specifically when the toe position satisfies xt = 0, indicating
contact between the toe and the ground.

During the stance phase, the hopper leg releases its pre-
compression, and this phase concludes once the leg returns
to its original rest length. The dynamics of the system during
the stance phase can be expressed as follows:

mbẍb = Fl −mbg

mf ẍf = −Fl + Fg −mfg,
(5)

Fl = kl(l − xb + xt)− dl(ẋb − ẋf ) is the internal leg force
and Fg = −kgxt−dgẋf is the ground supporting force. The
stance phase ends when leg length is restored to l.

To evaluate energy efficiency across different leg stiffness
and ground profiles, we perform a grid search over 208
different ground profiles and three leg stiffness values. Using
MATLAB’s ODE45, the simulation (based on Eq. (4) and (5)
with Table I parameters) ran until the preset hopping duration
was reached, outputting body and toe trajectories and the
steady-state apex height. This height, averaged over the last
10 hops, had a variance below 0.001mm. Trials where the
robot failed to lift-off were marked as failures.

V. RESULT

We present the results of both the simulation and the
experiment and discuss how the experimental data aligns
with the simulation findings to validate our hypothesis.

1) Experimental Result: Following the experimental pro-
cedures outlined in Section III-C, we conducted experiments
to evaluate hopping performance at different leg stiffness
levels. With constant potential energy applied during the
hopper’s flight phase, we measured the steady-state apex
height using the parameters detailed in Table I.

Fig. 5 (a) shows still shots of the HASTA robot hopping on
the ground emulator, while Fig. 5 (b) presents its trajectory
after three jumps, once steady-state was reached. The zero
position on both subplots represents the rest positions of
the robot and the ground surface. The blue and red tra-
jectories correspond to the positions of the body and the
toe, respectively. Due to its lighter weight, the toe exhibits
vibrations during flight, and similar vibrations occur in the
ground surface as it returns to rest.

The results of the apex height search experiment are shown
in Fig. 6. We use the average apex height of 20 jumps as the
performance metric. The steady-state apex heights for dif-
ferent leg stiffness values across various ground profiles are
displayed, with each value having a standard deviation of less
than 2mm. We used color coding to differentiate between
the various leg stiffness. For each ground profile (kg, dg), we
highlighted the leg stiffness that resulted in the maximum
steady-state hopping height by coloring the corresponding
data points and underlining the value. In cases where the
difference in apex heights between trials with different leg
stiffness values was less than 1mm (below the standard
deviation), we considered them too close to distinguish and
treated them as ties. In such cases, the data point is split
into multiple colors, indicating which leg stiffness values
resulted in the maximum apex height. We discarded data for
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the ground profile (2401.7N/m, 71.1Ns/m) as the stiffer
leg (kl = 5341N/m) was unable to hop in this region.

The results follow our hypothesis where stiff legs perform
well on stiff, less damped ground. In fact, the stiff leg
performs relatively well in most scenarios, even on more
damped ground. We will show in simulation that this can be
anticipated, as the apex height achieved by the soft legs only
slightly outperforms that of the stiff leg, as shown in Fig. 7.
The soft leg and medium-stiff leg also follow our hypothesis
that softer legs perform better on softer, damped ground.
However, there are two unexpected anomalies (discontinued
jump that did not follow the trend of the neighboring
data points on the grid in Fig. 6) in the ground profiles.
We expected the soft leg to achieve a higher steady-state
apex height at (2401.7N/m, 35.2Ns/m), and the medium-
stiff leg to perform better at (3410.8N/m, 71.4Ns/m). We
believe this discrepancy is due to unmodeled friction and
viscous damping in the vertical rail. Additionally, video
observations showed that the robot exhibited higher lateral
oscillation with the soft leg, potentially contributing to en-
ergy loss. Despite these outliers, the remaining data aligns
well with the expected trends.

2) Simulation Result: Our simulation takes constant en-
ergy as input, along with the robot specifications, leg stiff-
ness, and ground profile, and outputs the steady-state apex
height. Fig. 7 (g) shows the phase portrait of the robot’s tra-
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jectory with parameters closely matching the physical setup:
leg stiffness at 4300N/m, ground stiffness at 4400N/m,
and both damping coefficients at 35Ns/m. Each hop is
given a fixed input energy of 1.5 J, corresponding to a leg
compression of 26mm. The simulation releases the hopper
from six different initial heights, and in all cases, the system
converges to a limit cycle. This example shows that with
constant input energy, the hopping height converges to an
equilibrium regardless of initial conditions.

The simulated apex heights are shown in Fig. 7, where the
colored surfaces represent different leg stiffness inputs. The
data is left blank for trials that failed to achieve steady-state
hopping. Fig. 7 (a-f) highlights the regions where specific leg
stiffness values result in the highest apex hopping heights.
Since we did not have a valid way to measure the leg
damping coefficient, we repeat the simulation with three sets
of different leg damping condition and observed that the
results preserved similar trends.

The figure shows four consistent trends: (1) Stiffer legs
perform better on hard, less damped ground, achieving
greater hopping heights, while softer legs excel on softer,
more damped surfaces, with stiffer legs experiencing more
failures. (2) Lower ground damping and higher stiffness
consistently result in higher jumps, as energy loss is min-
imized. (3) When soft legs perform better, the performance
difference between leg stiffness is small, but when stiff
legs dominate, the difference is more significant. (4) As leg
damping increases, overall hopping height decreases, and
stiff legs gain more advantage. These results confirm our
hypothesis that softer legs are preferable on soft, damped
ground to minimize intrusion and energy loss, while stiffer
legs perform better on hard, less damped ground by reducing
limb deformation and leg damping energy loss.

Energy input plays a key role in performance. We applied
three different energy input levels, as listed in Table I,
with a leg damping coefficient of 35Ns/m, to illustrate
where the robot could achieve steady-state hopping. These

energy values are realistic for real-world scenarios, with the
maximum input compressing a 5000N/m leg by 30mm.
As input energy increased, the “successful hopping region”
expanded, particularly in softer, more highly damped areas,
as shown in Fig. 7 (h).

VI. CONCLUSION

The stable and consistent vertical hopping performance
of HASTA brings us closer to achieving adaptive stiffness
control for multi-objective optimization in dynamic locomo-
tion. Our experimental and simulation results successfully
identified the best leg stiffness for various ground profiles,
effectively addressing Problem 1. Both methods followed the
same trend, confirming our hypothesis: stiffer legs perform
better on hard, less damped ground by reducing limb de-
formation and energy dissipation, while softer legs excel on
soft, damped ground by minimizing penetration and energy
loss. This consistency between experiment and simulation
highlights the potential of using the simulation as a guide
to selecting the optimal leg stiffness in the controller for
improved hopping performance.

Although the stiffer leg performs well across all ground
profiles and only marginally loses to the soft leg in certain
edge cases, we argue that there are other scenarios where a
softer leg would be advantageous. For instance, a softer leg
is safer to work with and less intrusive on delicate ground
surfaces, making it preferable in environmentally sensitive
conditions. Therefore, future work should explore a multi-
objective optimization approach that considers additional
factors beyond apex height performance, such as specific
morphology with point-foot interaction.

With our established methodology, we can extend vali-
dation to explore more complex ground models simulated
by the ground emulator. Future work should also focus on
developing a comprehensive algorithm to detect different
ground profiles in real-time and adjust the leg stiffness
accordingly to maximize apex hopping height.
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