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Figure 1: Perception Graph overview — cognitive knowledge is spatially and temporally stored, encoded, and reasoned upon.

Abstract

Augmented reality (AR) systems are increasingly deployed in tacti-
cal environments, but their reliance on seamless human-computer
interaction makes them vulnerable to cognitive attacks that manip-
ulate a user’s perception and severely compromise user decision-
making. To address this challenge, we introduce the Perception
Graph, a novel model designed to reason about human percep-
tion within these systems. Our model operates by first mimicking
the human process of interpreting key information from an MR
environment and then representing the outcomes using a seman-
tically meaningful structure. We demonstrate how the model can
compute a quantitative score that reflects the level of perception
distortion, providing a robust and measurable method for detecting
and analyzing the effects of such cognitive attacks.
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1 Introduction

In augmented reality (AR) systems, the seamless blending of digital
and physical worlds introduces new vulnerabilities to cognitive
attacks that manipulate human perception. Such attacks—like in-
serting fake objects or removing real ones—can severely impair a
user’s ability to interpret critical information. Traditional computer
vision models, which typically operate at the pixel level, often fail to
detect these semantically meaningful alterations. Supervised learn-
ing approaches also face limitations, as they require large amounts
of training data, which is difficult to collect in real AR environments
and across diverse attack patterns, especially in safety-critical sce-
narios.

To address these limitations, we developed the Perception Graph
model, a novel approach for modeling human perceptions in a few
shots in AR systems. Our model uses pre-trained vision language
models (VLMs) to mimic human interpretation and understand-
ing [1]. It transforms AR visuals into a context-aware, semantically
rich representation that detects perception changes and computes
a distortion score, quantifying cognitive attack impact. This yields
human-like understanding and a robust, interpretable foundation
for mission-critical perception security.
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Figure 2: Attack reasoning examples in an agricultural drone scene — alterations in Perception Graph information or structural

changes result in higher distance scores.

2 Methodology

Our Perception Graph model is designed to detect cognitive attacks
in AR environments through a two-phase process.

Graph Construction Phase. As illustrated in Fig.1 and Fig.2, the
construction phase begins by generating reference graphs that en-
code the ground-truth semantic interpretation of a scene. These
graphs are derived from the semantic outputs of Vision-Language
Models (VLMs). While VLMs capture the underlying meaning of
objects and relationships, their natural language descriptions often
vary in word choice and phrasing. To resolve this variability, each
description is passed through a text encoder, which projects it into
a latent embedding space. In this space, semantic meaning is repre-
sented by the direction of the embedding vector, and similarities
between descriptions can be consistently measured with cosine
similarity.

In addition to encoding meaning, the construction phase also
generate contextual weights for each object. These weights quantify
the object’s relative importance in the scene, allowing the model
to focus protection efforts on critical objects. For example, traffic
signs, hazard warnings, or navigation markers—while treating less
relevant objects with lower priority. This selective emphasis ensures
that detection resources are concentrated where cognitive attacks
would cause the greatest harm.

Detection phase. During the detection phase, the model processes
new AR frames to generate a perception graph and aligns it with the
stored reference graphs. Scene objects are represented as nodes car-
rying both semantic embeddings and contextual weights. Semantic
changes—such as addition, removal, or modification of nodes—are
detected by comparing embeddings of corresponding nodes. To
quantify differences, we define a distance function: Distance
v1 - Sim(Ey, Ez), where Sim(E;, E;) denotes the cosine similarity
between embeddings E; and E,. Smaller distances indicate semantic
consistency, while larger distances reveal deviations. A distance of
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Table 1: Attack detection based on distance scores and Z-
scores relative to the normal distribution (¢ = 0.32, 0 = 0.11).

Attack Type Distance Z-score Detection
Route Modification 0.72 + 0.08 3.60 Attack
Fake Control Panel 0.64 + 0.05 290 Attack
Map Deletion 1.00 6.20 Attack

1 corresponds to a missing node (i.e., no semantic match), and dis-
tances exceeding a defined threshold trigger a potential cognitive
attack alert.

3 Demonstration

In Fig. 2, we show three representative cognitive attacks and their
impact on graph distance scores over 10 reference frames. Under
normal conditions, distances follow a distribution with mean p =
0.32 and standard deviation ¢ = 0.11, capturing natural variation
in VLM-generated embeddings.
To quantify deviations, we compute the Z-score for each observed
distance d:
d—p

z=""F 1)

o

Table 1 reports the results. Route modification yields 3.60, fake
control panel 2.9, and map deletion 6.20—all well outside normal
variation. Frames exceeding a threshold (e.g., Z > 2) are flagged as
potential cognitive attacks.

This statistical mapping transforms raw distances into inter-
pretable evidence of semantic deviation, enabling robust detection
of AR cognitive attacks.
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