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ABSTRACT
Cognitive attacks in mixed reality (MR), e.g., latency perturbations
that induce frame-time jitter, can divert visual attention and degrade
task performance. We study 2D gaze prediction under such distur-
bances and propose a time-aware sequence model that handles
irregular sampling by supplying elapsed times Δ𝑡 between obser-
vations and conditions on sparse event/object context available at
prediction time via learned token embeddings. Using time-based
windows, we evaluate within-user and cross-user temporal gen-
eralization on MR recordings spanning multiple attack intensities.
Results indicate accurate, time-robust gaze regression under latency
perturbations, supporting adaptive MR interfaces in adversarial set-
tings.

CCS CONCEPTS
• Human-centered computing → Interaction design.
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1 INTRODUCTION
Mixed reality (MR) environments present unique challenges for
human attention modeling due to the complex interplay between
virtual and physical elements in the user’s field of view. Cognitive
attacks in MR, e.g., induced latency spikes, intentionally burden per-
ception and decision-making, diverting user attention away from
task goals. In cognitive psychology, gaze is a reliable behavioral
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correlate of the locus of visual attention [1–3]; hence, predicting
a user’s gaze point in real time offers a practical control signal for
adaptive interfaces and safety.

2 DATASET AND PRE-PROCESSING
2.1 Dataset Description
The gaze prediction model was developed based on data from
Penn State’s Tactical Search and Rescue (TSR) testbed. We utilize
8 datasets from three participants with six different latency lev-
els, each completing ten-minute MR training sessions involving
dynamic latency conditions representing cognitive attacks. Dur-
ing each one-minute interval, participants experience continuous
cognitive attacks at a fixed intensity level. Multimodal data were
captured, including eye-tracking metrics (e.g., eye position, gaze
direction, gaze targets), inertial head-tracking data (head position
and rotation), real-time scene video features (e.g., brightness, lu-
minance, and spectral entropy), event logs (e.g., LaserGunFired,
MedBoxUsed), and system telemetry parameters such as latency
levels. Specifically, we obtain time-synchronized numeric streams
and auxiliary signals as:

• Eye-Tracking (10 dims, averaged across eyes): per-frame
3D eye position (𝑥,𝑦, 𝑧), eye rotation quaternion (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧 , 𝑞𝑤),
and 3D gaze direction (𝑑𝑥 , 𝑑𝑦, 𝑑𝑧), averaged from left/right
into AvgEye* and AvgGazeDirection*.

• Head-Tracking (7 dims): 3D head position and head rota-
tion quaternion (3+4).

• Attack Intensity (1 dim): a per-frame scalar joined from
the per-interval attack schedule/logs (FPS/latency level) and
forward-filled within each interval.

• Object Tokens: lists of object names/IDs aligned to the
nearest sensor frame.

• Event Tokens: lists of event names/IDs aligned to the near-
est sensor frame within a small tolerance.

• Ground-Truth Gaze: 2D gaze (𝑔𝑥 , 𝑔𝑦) from the device in
pixel.

2.2 Feature Engineering Pipeline
Numeric features and scaling. All numeric features are z-scored
with StandardScaler fit on the training split and reused for vali-
dation/test.

Token embedding. Event/object sets are mapped to integer IDs
using a vocabulary built from training data (with PAD and UNK ).
Within a batch, tokens are padded, embedded (16-d nn.Embedding),
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and mean-pooled over non-pad tokens to form a frame-level em-
bedding; we use the tokens from the prediction frame.

Time-based windows. For each anchor time 𝑡𝑖 , we form a
window [𝑡𝑖−𝑊, 𝑡𝑖 ] in seconds and include all frames in this interval,
preserving irregular timestamps. We do not resample to a fixed
length; per-step gaps Δ𝑡 𝑗 = 𝑡 𝑗 − 𝑡 𝑗−1 are carried to the model.
Targets are future screen-normalized gaze (𝑔𝑥 , 𝑔𝑦) ∈ [0, 1]2 at
horizon Δpred (e.g., 100ms), aligned to the nearest label within ±𝜖
(we use 𝜖 = 40ms) using only observations up to 𝑡𝑖 .

3 MODEL
We predict future gaze ĝ = (𝑔𝑥 , 𝑔𝑦) ∈ [0, 1]2 at a fixed horizon
Δpred from multimodal telemetry observed up to 𝑡𝑖 . Ground-truth
g𝑡𝑖+Δpred is matched by nearest-neighbor in time within ±𝜖 ; inputs
strictly exclude future information.

3.1 Overview
Our architecture has three components: (i) a time-aware LSTM
encoder for numeric streams; (ii) Last-Observation-Carry-Forward
(LOCF)-Decay encoders for sparse event and object signals; and
(iii) a fusion MLP that outputs ĝ.

3.2 Numeric stream encoder
A 3-layer unidirectional LSTM (hidden size 512) processes the stan-
dardized numeric sequence with packed batches. To reduce reliance
on stale inputs under irregular sampling, we apply a simple time-
decay gate to the final state:

h̃𝑖 = exp(−𝛼 Δ𝑡𝑖 ) ⊙ h𝑖 , 𝛼 = softplus(𝛼) ≥ 0,

where Δ𝑡𝑖 is the gap since the last observed frame.

3.3 Event and object encoders (LOCF-Decay)
For events, we take the most recent token 𝑒∗ at or before 𝑡𝑖 , embed
it (16-d), and apply exponential decay with staleness 𝑠evt:

ē𝑖 = 𝑔evt (𝑠evt) U𝐸 [𝑒∗] +
(
1 − 𝑔evt (𝑠evt)

)
U𝐸 [NONE],

𝑔evt (𝑠) = exp(−𝛽evt𝑠), 𝛽evt ≥ 0.

We add compact auxiliaries (presence bit and capped staleness).
For objects, we locate the latest non-empty detection, mean-pool

object embeddings with (𝑥,𝑦) coordinates through a small MLP 𝜙 ,
and apply decay with staleness 𝑠obj. The decay rate can adapt to
instantaneous head angular speed ∥𝝎head (𝑡𝑖 )∥:

𝛾obj = softplus(𝛾0 + 𝛾1∥𝝎head (𝑡𝑖 )∥), 𝑔obj (𝑠) = exp(−𝛾obj𝑠).

We also include presence, capped staleness, and capped object
count.

3.4 Fusion and training
We concatenate h̃𝑖 , the decayed event/object representations, and
the small auxiliary vector, and feed the result to an MLP with
sigmoid output to ensure ĝ ∈ [0, 1]2. The loss is mean squared
error:

LMSE = 1
2
[
(𝑔𝑥 − 𝑔𝑥 )2 + (𝑔𝑦 − 𝑔𝑦)2] .

4 EVALUATION AND RESULTS
4.1 Experimental Setup
We use time-based windows of𝑊 = 5 s ending at anchor 𝑡𝑖 . The
prediction horizon is Δpred = 100ms, so labels are taken at 𝑡label =
𝑡𝑖 + Δpred. Training anchors are spaced by 𝑆train = 50ms; valida-
tion/test anchors use 𝑆val = 𝑆test = 100ms. We train with Adam
(lr = 10−3), batch size 64, dropout 0.2, weight decay 10−5, for up
to 150 epochs with early stopping (patience 15, min_delta = 10−5).
The best-on-validation checkpoint is used for all reports.

Evaluation protocols.
Within-user: For each of 8 datasets, we perform a temporal split

of 72% / 8% / 20% (train/val/test) with𝑊 -sized gaps between splits;
anchors are restricted to their split.

LOUO: 8-fold cross-user evaluation holding out one user group
𝐺𝑘 as test; validation comes from tail segments of the remaining
groups with a𝑊 gap.

4.2 Results
Within-user training dynamics. Learning curves (Fig. 1) show
stable convergence by epochs 30–50, with no overfitting under
temporal splits with gaps.

Figure 1: Within-user learning curves across 8 datasets.

Cross-user generalization (Leave-one-user-out, LOUO). Ag-
gregate results across the 8 folds, our model attains RMSEnorm =

0.0589 with positive 𝑅2 along both axes (CIs strictly above zero),
indicating non-trivial cross-user generalization.

5 CONCLUSION
We presented a time-aware LSTM for 2D gaze prediction in MR,
under cognitively induced latency perturbations (variable FPS). We
evaluate bothwithin-user and leave-one-user-out (LOUO) protocols.
The approach achieves strong validation performance and robust
gaze regression under latency perturbations, providing a practical
signal for adaptive MR interfaces.
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